
A Baseline Symbolic Regression Algorithm

Michael F. Korns

Korns Associates, 98 Perea Street, Makati 1229, Manila Philippines
mkorns@korns.com.

Abstract.
Recent advances in symbolic regression (SR) have promoted the field into

the early stages of commercial exploitation. This is the expected maturation
history for an academic field which is progressing rapidly. The original pub-
lished symbolic regression algorithms in (Koza 1992) have long since been
replaced by techniques such as pareto front, age layered population struc-
tures, and even age pareto front optimization. The lack of specific techniques
for optimizing embedded real numbers, in the original algorithms, has been
replaced with sophisticated techniques for optimizing embedded constants.
Symbolic regression is coming of age as a technology.

As the discipline of Symbolic Regression (SR) has matured, the first com-
mercial SR packages have appeared. There is at least one commercial pack-
age on the market for several years http://www.rmltech.com/. There is now
at least one well documented commercial symbolic regression package avail-
able for Mathmatica www.evolved-analytics.com. There is at least one very
well done open source symbolic regression package available for free download
http://ccsl.mae.cornell.edu/eureqa. Yet, even as the sophistication of commer-
cial SR packages increases, there have been glaring issues with SR accuracy
even on simple problems (Korns 2011). The depth and breadth of SR adop-
tion in industry and academia will be greatly affected by the demonstrable
accuracy of available SR algorithms and tools.

In this chapter we develop a complete public domain algorithm for modern
symbolic regression which is reasonably competitive with current commercial
SR packages, and calibrate its accuracy on a set of of previously published
sample problems. This algorithm is designed as a baseline for further public
domain research on SR algorithm simplicity and accuracy. No claim is made
placing this baseline algorithm on a par with commercial packages - especially
as the commercial offerings can be expected to relentlessly improve in the fu-
ture. However this baseline is a great improvement over the original published
algorithms, and is an attempt to consolidate the latest published research into
a simplified baseline algorithm of similar speed and accuracy.



2 Michael F. Korns

The baseline algorithm presented herein is called Age Weighted Pareto
Opimization. It is an almalgamation of recent published techniques in pareto
front optimization (Kotanchek 2008), age layered population structures (Hornby
2006), age fitness pareto optimization (Schmidt 2010), and specialized em-
bedded abstract constant optimization (Korns 2010). The complete pseudo
code for the baseline algorithm is presented in this paper. It is developed
step by step as enhancements to the original published SR algorithm (Koza
1992) with justifications for each enhancement. Before-after speed and accu-
racy comparisons are made for each enhancement on a series of previously
published sample problems.

Key words: Abstract Expression Grammars, Grammar Template Genetic
Programming, Genetic Algorithms, Particle Swarm, Symbolic Regression.



A Baseline Symbolic Regression Algorithm 3

1 Introduction

The discipline of Symbolic Regression (SR) has matured significantly in the
last few years. There is at least one commercial package on the market for
several years http://www.rmltech.com/. There is now at least one well doc-
umented commercial symbolic regression package available for Mathematica
www.evolved-analytics.com. There is at least one very well done open source
symbolic regression package available for free download http://ccsl.mae.cornell.edu/eureqa.
In addition to our own ARC system (Korns 2010), currently used internally
for massive (million row) financial data nonlinear regressions, there are a num-
ber of other mature symbolic regression packages currently used in industry
including (Smits 2010) and (Castillo 2010). Plus there is an interesting work
in progress by (McConaghy 2009).

Yet, despite the increasing sophistication of commercial SR packages, there
have been serious issues with SR accuracy even on simple problems (Korns
2011). Clearly the perception of SR as a must use tool for important prob-
lems or as an interesting heurism for shedding light on some problems, will
be greatly affected by the demonstrable accuracy of available SR algorithms
and tools. The depth and breadth of SR adoption in industry and academia
will be greatest if a very high level of accuracy can be demonstrated for SR
algorithms.

In this chapter we develop a simple, easy to implement, public domain al-
gorithm for modern symbolic regression which is reasonably competitive with
current commercial SR packages. This algorithm is meant to be a baseline
for further public domain research on provable SR algorithm accuracy. It is
called Constant Swarm with Operator Weighted Pruning, and is inspired by
recent published techniques in pareto front optimization (Kotanchek 2008),
age layered population structures (Hornby 2006), age fitness pareto optimiza-
tion (Schmidt 2010), and specialized embedded abstract constant optimiza-
tion (Korns 2010). The complete pseudo code for the baseline algorithm is
presented in this paper. It is developed as a series of step by step as en-
hancements to a simple brute force GP algorithm with justifications for each
enhancement. Before-after speed and accuracy comparisons are made on a
series of previously published sample problems.

Of course, as commercial packages improve, many market-competitive fea-
tures and techniques will be developed outside the public domain. This is a
natural process within the development of a promising new technology. No
claim is made placing this baseline algorithm on a par with commercial pack-
ages - especially as the commercial offerings can be expected to relentlessly
improve in the future and not necessarily within the public domain. This base-
line is an attempt to consolidate the latest published research into a simplified
baseline algorithm for further research on SR speed and accuracy.

Before continuing with the details of our baseline algorithm, we proceed
with a basic introduction to general nonlinear regression. Nonlinear regression
is the mathematical problem which Symbolic Regression aspires to solve. The



4 Michael F. Korns

canonical generalization of nonlinear regression is the class of Generalized
Linear Models (GLMs) as described in (Nelder 1972). A GLM is a linear
combination of I basis functions Bi; i = 1,2, I, a dependent variable y, and
an independent data point with M features x = <x1, x2, x3, xm>: such that

• (E1) y = γ(x) = c0 + ΣciBi(x) + err

As a broad generalization, GLMs can represent any possible nonlinear
formula. However the format of the GLM makes it amenable to existing linear
regression theory and tools since the GLM model is linear on each of the
basis functions Bi. For a given vector of dependent variables, Y, and a vector
of independent data points, X, symbolic regression will search for a set of
basis functions and coefficients which minimize err. In (Koza 1992) the basis
functions selected by symbolic regression will be formulas as in the following
examples:

• (E2) B1 = x3
• (E3) B2 = x1+x4
• (E4) B3 = sqrt(x2)/tan(x5/4.56)
• (E5) B4 = tanh(cos(x2*.2)*cube(x5+abs(x1)))

If we are minimizing the least squared error, LSE, once a suitable set of
basis functions B have been selected, we can discover the proper set of coeffi-
cients C deterministically using standard univariate or multivariate regression.
The value of the GLM model is that one can use standard regression tech-
niques and theory. Viewing the problem in this fashion, we gain an important
insight. Symbolic regression does not add anything to the standard techniques
of regression. The value added by symbolic regression lies in its abilities as
a search technique: how quickly and how accurately can SR find an optimal
set of basis functions B. The immense size of the search space provides ample
need for improved search techniques. In basic Koza-style tree-based Genetic
Programming (Koza 1992) the genome and the individual are the same Lisp
s-expression which is usually illustrated as a tree. Of course the tree-view of
an s-expression is a visual aid, since a Lisp s-expression is normally a list
which is a special Lisp data structure. Without altering or restricting basic
tree-based GP in any way, we can view the individuals not as trees but instead
as s-expressions such as this depth 2 binary tree s-exp: (/ (+ x2 3.45) (* x0
x2)), or this depth 2 irregular tree s-exp: (/ (+ x4 3.45) 2.0).

In basic GP, applied to symbolic regression, the non-terminal nodes are
all operators (implemented as Lisp function calls), and the terminal nodes are
always either real number constants or features. The maximum depth of a
GP individual is limited by the available computational resources; but, it is
standard practice to limit the maximum depth of a GP individual to some
manageable limit at the start of a symbolic regression run.



A Baseline Symbolic Regression Algorithm 5

Given any selected maximum depth k, it is an easy process to construct
a maximal binary tree s-expression Uk, which can be produced by the GP
system without violating the selected maximum depth limit. As long as we
are reminded that each f represents a function node while each t represents a
terminal node, the construction algorithm is simple and recursive as follows.

• (U0): t
• (U1): (f t t)
• (U2): (f (f t t) (f t t))
• (U3): (f (f (f t t) (f t t)) (f (f t t) (f t t)))
• (Uk): (f Uk−1 Uk−1)

The basic GP symbolic regression system (Koza 1992) contains a set of
functions F, and a set of terminals T. If we let t ∈ T, and f ∈ F ∪ ξ, where
ξ(a,b) = ξ(a) = a, then any basis function produced by the basic GP system
will be represented by at least one element of Uk. In fact, Uk is isomorphic to
the set of all possible basis functions generated by the basic GP system to a
depth of k.

Given this formalism of the search space, it is easy to compute the size of
the search space, and it is easy to see that the search space is huge even for
rather simple basis functions. For our use in this chapter the function set will
be the following functions: F = (+ - * / abs sqrt square cube quart cos
sin tan tanh log exp max min ξ). The terminal set is the features x0 thru
xm and the real constant c, which we shall consider to be 2264 in size. Where
‖F‖ = 18, M=20, and k=0 , the search space is S0 = M+2264 = 20+2264

= 1.84x1019. Where k=1, the search space is S1 = ‖F‖*S0*S0 = 6.12x1039.
Where k=2, the search space grows to S2 = ‖F‖*S1*S1 = 6.75x1080. For k=3,
the search space grows to S3 = ‖F‖*S2*S2 = 8.2x10162. Finally if we allow
three basis functions B=3, then the final size of the search space is S3*S3*S3
= 5.53x10487.

Clearly even for three simple basis functions, with only 20 features and
very limited depth, the size of the search space is already very large; and, the
presence of real constants accounts for a significant portion of that size. For
instance, without real constants, S0 = 20, S3 = 1.054x1019, and with B=3
the final size of the search space is 1.054x1057.

It is our contention that since real constants account for such a significant
portion of the search space, symbolic regression would benefit from special
constant evolutionary operations. Since basic GP does not offer such oper-
ations, we investigate the enhancement of symbolic regression with swarm
intelligence algorithms specifically designed to evolve real constants.

1.1 Example Test Problems

In this chapter we list the example test problems which we will address. All
of these test problems are no more than three grammar nodes deep (Note:



6 Michael F. Korns

in problem P10, quart(x) = x4). All test problems reference no more than
five input features. Some are easily solved with current Symbolic Regression
techniques. Others are not so easily solved.

• (P1): y = 1.57 + (24.3*x3)
• (P2): y = 0.23 + (14.2*((x3+x1)/(3.0*x4)))
• (P3): y = -5.41 + (4.9*(((x3-x0)+(x1/x4))/(3*x4)))
• (P4): y = -2.3 + (0.13*sin(x2))
• (P5): y = 3.0 + (2.13*log(x4))
• (P6): y = 1.3 + (0.13*sqrt(x0))
• (P7): y = 213.80940889 - (213.80940889*exp(-0.54723748542*x0))
• (P8): y = 6.87 + (11*sqrt(7.23*x0*x3*x4))
• (P9): y = ((sqrt(x0)/log(x1))*(exp(x2)/square(x3)))
• (P10): y = 0.81 + (24.3*(((2.0*x1)+(3.0*square(x2)))/((4.0*cube(x3))+(5.0*quart(x4)))))
• (P11): y = 6.87 + (11*cos(7.23*x0*x0*x0))
• (P12): y = 2.0 - (2.1*(cos(9.8*x0)*sin(1.3*x4)))
• (P13): y = 32.0 - (3.0*((tan(x0)/tan(x1))*(tan(x2)/tan(x3))))
• (P14): y = 22.0 - (4.2*((cos(x0)-tan(x1))*(tanh(x2)/sin(x3))))
• (P15): y = 12.0 - (6.0*((tan(x0)/exp(x1))*(log(x2)-tan(x3))))

As a discipline, our goal is to demonstrate that all of the 10162 possible
test problems can be solved after a reasonable number of individuals have
been evaluated. This is especially true since we have limited these 10162 possi-
ble test problems to target functions which are univariate, reference no more
than five input features, and which are no more than three grammar nodes
deep. On the hopeful side, if the Symbolic Regression community can achieve
a demonstration of absolute accuracy, then the same rigorous statistical in-
ferences can follow a Symbolic Regression as now follow a Linear Regression,
which would be a significant advancement in scientific technique.

For the sample test problems, we will use only statistical best practices
out-of-sample testing methodology. A matrix of independent variables will
be filled with random numbers. Then the model will be applied to produce
the dependent variable. These steps will create the training data. A symbolic
regression will be run on the training data to produce a champion estimator.
Next a matrix of independent variables will be filled with random numbers.
Then the model will be applied to produce the dependent variable. These
steps will create the testing data. The estimator will be regressed against the
testing data producing the final LSE and R-Square scores for comparison.

2 Brute Force Elitist GP Symbolic Regression

In basic GP symbolic regression (Koza 1992), a Lisp s-expression is manipu-
lated via the evolutionary techniques of mutation and crossover to produce a
new s-expression which can be tested, as a basis function candidate in a GLM.



A Baseline Symbolic Regression Algorithm 7

Basis function candidates that produce better fitting GLMs are promoted.
Mutation inserts a random s-expression in a random location in the starting
s-expression. For example, mutating s-expression (E4) we obtain s-expression
(E4.1) wherein the sub expression ”tan” has been randomly replaced with the
sub expression ”cube”. Similarly, mutating s-expression (E5) we obtain s-
expression (E5.1) wherein the sub expression ”cos(x2*.2)” has been randomly
replaced with the sub expression ”abs(x2+x5)”.

• (E4) B3 = sqrt(x2)/tan(x5/4.56)
• (E4.1) B5 = cos(x2)/cube(x5/4.56)
• (E5) B4 = tanh(cos(x2*.2)*cube(x5+abs(x1)))
• (E5.1) B6 = tanh(abs(x2+ x5)*cube(x5+abs(x1)))

Crossover combines portions of a mother s-expression and a father s-
expression to produce a child s-expression. Crossover inserts a randomly se-
lected sub expression from the father into a randomly selected location in the
mother. For example, crossing s-expression (E5) with s-expression (E4) we
obtain child s-expression (E5.2) wherein the sub expression ”cos(x2*.2)” has
been randomly replaced with the sub expression ”tan(x5/4.56)”. Similarly,
again crossing s-expression (E5) with s-expression (E4) we obtain another
child s-expression (E5.3) wherein the sub expression ”x5+abs(x1)” has been
randomly replaced with the sub expression ”sqrt(x2)”.

• (E4) B3 = sqrt(x2)/tan(x5/4.56)
• (E5) B4 = tanh(cos(x2*.2)*cube(x5+abs(x1)))
• (E5.2) B7 = tanh(tan(x5/4.56)*cube(x5+abs(x1)))
• (E5.3) B8 = tanh(cos(x2*.2)*cube(sqrt(x2)))

These mutation and crossover operations are the main tools of basic GP,
which functions as described in Algorithm A1, randomly creating a population
of candidate basis functions, mutating and crossing over those basis functions
repeatedly while consistently promoting the most fit basis functions. The win-
ners being the collection of basis functions which receive the most favorable
least square error in a GLM with standard regression techniques.

Our core baseline is the brute force elitist GP algorithm outlined in Al-
gorithm (A1). It has been selected, as our baseline, because it is very simple,
has very few parameters, and is easy to implement. It is intended for use as a
public domain baseline SR algorithm for further research in SR accuracy. The
inputs are a vector of N training points, X, a vector of N dependent variables,
Y, and the number of generations to train, G. Each point in X is a member
of RM = <x1, x2, x3, xm>. The fitness score is the root mean squared error
divided by the standard deviation of Y, NLSE.



8 Michael F. Korns

Algorithm A1: Brute force elitist GP Symbolic Regression

1 Function: symbolicRegression(X,Y,G)

2 Input: X // N vector of independent M-featured training points

3 Input: Y // N vector of dependent variables

4 Input: G // Number of generations to train

5 Output: champ // Champion s-expression individual

6 Parameters: maxPopSize maxIslandCount

Summary: Brute force elitist GP searches for a champion

s-expression by randomly growing and scoring a

large number of candidate s-expressions, then

iteratively creating and scoring new candidate

s-expressions via mutation and crossover. After

each iteration, the population of candidate

s-expressions is truncated to those with the best

fitness score. After the final iteration, the

champion is the s-expression with the best

fitness score.

7 Function: mutateSExp(me)

Summary: mutateSExp randomly alters an input s-expression

by replacing a randomly selected sub expression

with a new randomly grown sub expression.

8 me = copy(me)

9 set L = number of nodes in me // me is a list of Lisp Pairs

10 set n = random integer between 0 and L

11 set me[n] = s // Replaces nth node with s

12 return me

13 end fun mutateSExp

14 Function: crossoverSExp(mom,dad)

Summary: crossoverSExp randomly alters a mom input

s-expression by replacing a randomly selected

sub expression in mom with a randomly selected

sub expression from dad.

15 dad = copy(dad)

16 mom = copy(mom)

17 set Ld = number of nodes in dad // dad is a list of Pairs

18 set Lm = number of nodes in mom // mom is a list of Pairs

19 set n = random integer between 0 and Lm

20 set m = random integer between 0 and Ld

21 set mom[n] = dad[m] // Replaces nth node with mth node

22 return mom

23 end fun crossoverSExp

24 Function: optimizeConstants(me)



A Baseline Symbolic Regression Algorithm 9

Summary: Optimize any embedded constants in me

25 return mutateSExp(me)

26 end fun optimizeConstants

27 Function: insertLambda(population,lambda)

Summary: inserts the specified lambda into the specified

population unordered

28 if (population.length <= 0) then set population = new vector of length 0

29 set population.last = lambda

30 return lambda

31 end fun insertLambda

32 Function: populationPruning(inPopulation,outPopulation,islands)

Summary: Copies the input population into the output population.

Adds random individuals to the output population.

Sorts the output population in ascending order of

fitness score. Truncates the output population to

the maximum population size. Always organizes the

population into a single island.

33 set outPopulation = new vector of length 0

34 set maxIslandCount = 1

35 if (inPopulation.length <= 0) then

36 // Initialize with random individuals

37 set K = 5*maxPopSize

38 for k from 0 until K do // Initialize population

39 set lambda = generate random individual

40 do evaluate lambda and set its fitness score

41 set lambda.island = 0

42 insertLambda(outPopulation,lambda)

43 end for k

44 else

45 // Copy and add a few more random individuals

46 set outPopulation = copy(inPopulation)

47 set K = maxPopSize/10

48 for k from 0 until K do // Initialize population

49 set lambda = generate random individual

50 do evaluate lambda and set its fitness score

51 set lambda.island = 0

52 insertLambda(outPopulation,lambda)

53 end for k

54 end if

55 sort outPopulation in ascending order by fitness score

56 truncate outPopulation to length of maxPopSize

57 set inPopulation = outPopulation

58 // Alway return island index with only one island



10 Michael F. Korns

59 set islands = new vector of length 1

60 set islands[0] = inPopulation

61 champ = inPopulation.first

62 return champ

63 end fun populationPruning

64 Main:

65 set maxPopSize = 5000

66 set maxIslandCount = 1

67 if (G <= 0) then populationPruning(inPopulation,outPopulation,islands)

68 set P = inPopulation.length

69 set champ = inPopulation.first

70 for g from 0 until G do // Main evolution loop

71 set P = inPopulation.length

72 // Everyone gets mutated and crossed over

73 for p from 0 until P do

74 set lambda = optimizeConstants(inPopulation[p])

75 insertLambda(outPopulation,lambda)

76 set lambda = mutateSExp(inPopulation[p])

77 insertLambda(outPopulation,lambda)

78 set dad = inPopulation[p]

79 // Cross over partner must be from the same island

80 set K = dad.island

81 set i = random integer between 0 and islands[K].length

82 set mom = island[K][i]

83 set lambda = crossoverSExp(dad,mom)

84 insertLambda(outPopulation,lambda)

85 end for p

86 populationPruning(inPopulation,outPopulation,islands)

87 set champ = inPopulation.first

88 end for g

89 return champ

90 end fun symbolicRegression

As a base line for symbolic regression, our brute force elitist algorithm
leaves us far from our accuracy goal. In fact we quickly demonstrate that
there are large sets of test problems which are intractable with our baseline
algorithm.

The results of our brute force elitist algorithm on the test problems are
shown in Table 1.



A Baseline Symbolic Regression Algorithm 11

Table 1. Results for Brute Force Elitist GP Symbolic Regression

Test WFFs Train-NLSE Train-TCE Test-NLSE Test-TCE
P01 14K 0.00 0.00 0.00 0.00
P02 96K 0.00 0.00 0.00 0.00
P03 74M 0.00 0.00 0.00 0.00
P04 34K 0.00 0.00 0.00 0.00
P05 94K 0.00 0.00 0.00 0.00
P06 12K 0.00 0.00 0.00 0.00
P07 82M 0.00 0.00 0.00 0.00
P08 1M 0.00 0.00 0.00 0.00
P09 71G 0.01 0.00 0.97 0.37
P10 85G 0.83 0.39 1.00 0.49
P11 81G 0.99 0.46 1.00 0.49
P12 89G 0.99 0.48 1.04 0.50
P13 85G 0.81 0.30 1.00 0.93
P14 83G 0.53 0.17 1.53 0.47
P15 1M 0.00 0.00 0.00 0.00

(Note: the number of individuals evaluated before finding a solution is listed in the
Well Formed Formulas (WFFs) column)

3 Premature Convergence and Complexity Pruning

Our brute force elitist symbolic regression program, suffers from the same
problem of bloat which plagues other unconstrained GP systems (Smits 2005).
The population is increasingly dominated by basis functions which have grown
impossibly long. Furthermore, the population quickly becomes dominated by
large numbers of basis functions clustering in the most promising areas pre-
venting the exploration of other potentially promising areas. This creates a
population malaise known as premature convergence.

The problems of bloat and premature convergence in GP systems have
been discussed heavily in the recent literature. A number of techniques have
been developed to combat bloat, the most notable of which is pareto front
optimization (Kotanchek 2008). Additionally a number of techniques have
been developed to combat premature convergence, the most notable of which
are age layered population structures (Hornby 2006), and age fitness pareto
optimization (Schmidt 2010). Each of these techniques attempt to keep the
population evenly distributed over a wide variety of different possible solutions
in both length and complexity.

To address this issue in our simple baseline algorithm, we can apply the
concept of a pareto front forcing a multi objective optimization between fitness
and complexity via simple complexity pruning. Our symbolic regression sys-
tem will be enhanced to prune the population such that basis functions with
similar operator complexity are clustered together in islands. Each complex-
ity island will be pruned when it gets too large. This pruning activity assures



12 Michael F. Korns

that the computational resources will be spread across individuals in many
different complexity islands. The population will never be allowed to cluster
in one or two areas preventing the exploration of other promising areas. We
call this simple but effective technique Operator Weighted Pruning.

The changes and enhancements for operator weighted population pruning
are shown in Algorithm (A2).

Algorithm A2: populationPruning

1 Function: populationPruning(inPopulation,outPopulation,islands)

2 Parameters: maxPopSize maxIslandCount maxIslandSize

3 Replaces: A1.populationPruning lines 32 thru 63

4 Summary: Copies the input population into the output population.

Adds random individuals to the output population.

Sorts the output population in ascending order of

fitness score. Computes the weighted complexity score of

each individual and assigns each individual to a complexity

island. Eliminates all non-dominant individuals in each

complexity island. Truncates the output population to

the maximum population size. Always organizes the

population into multiple separate islands by complexity.

5 Function: weightedComplexity(me,depth)

6 Summary: Returns a complexity score similar to the pareto front length

algorithm but with each function operator having a different

weight. For A = (+ (cos x2) x1), B = (- (log x2) x4), and

C = (+ 22.3 (abs x0)) these all have the same pareto front

length of 5. However with operator weighted pareto complexity

the complexities all change because the operators are different

where the weighted lengths are A = 13, B = 11, and C = 5.

This tends to group arithmetic operators with other arithmetic

operators and trancendential operators with other trancendential

operators etc.

7 if (me is a list) then

8 // me is a function call with the operator first

9 set operator = me[0]

10 set weight = operator.weight

11 set complexity = 0

12 set N = me.length

13 for n from 1 until N do

14 set complexity = complexity + weightedComplexity(me[n],weight*(depth+1))

15 end for n

16 else

17 // me is a single element

18 set complexity = depth + 1

19 end if



A Baseline Symbolic Regression Algorithm 13

20 return complexity

21 end fun weightedComplexity

22 set maxPopSize = 5000

23 set maxIslandCount = 500

24 set maxIslandSize = integer(maxPopSize / maxIslandCount)

25 set outPopulation = new vector of length 0

26 if (inPopulation.length <= 0) then

27 // Initialize with random individuals

28 set K = 5*maxPopSize

29 for k from 0 until K do // Initialize population

30 set lambda = generate random individual

31 set lambda = convertToAEG(lambda)

32 do evaluate lambda and set its fitness score

33 set lambda.weight = empty

34 insertLambda(outPopulation,lambda)

35 end for k

36 else

37 // Copy and add a few more random individuals

38 set outPopulation = copy(inPopulation)

39 set K = maxPopSize/10

40 for k from 0 until K do // Initialize population

41 set lambda = generate random individual

42 do evaluate lambda and set its fitness score

43 set lambda.weight = empty

44 insertLambda(outPopulation,lambda)

45 end for k

46 end if

47 sort outPopulation in ascending order by fitness score

48 set N = outPopulation.length

49 // Compute weighted complexity range

50 for n from 0 until N do

51 set lambda = outPopulation[n]

52 if (lambda.weight is empty) then set lambda.weight = weightedComplexity(lambda,0)

53 weight = lambda.weight

54 if (weight < low) then low = weight

55 if (weight > high) then high = weight

56 end for n

57 range = (high - low)

58 set islandCounts = new vector of length maxIslandCount

59 set inPopulation = new vector of length 0

60 set islands = new vector of length maxIslandCount

61 // Alway return island structure with one island for each complexity partition

62 // Prune all non-dominant individuals in each pareto front complexity island

63 for n from 0 until N do



14 Michael F. Korns

64 set lambda = outPopulation[n]

65 set weight = lambda.weight

66 set lambda.island = island = integer(maxIslandCount * ((weight - low) / range))

67 set islandCounts[island] = islandCounts[island] + 1

68 if (islandCounts[island] <= maxIslandSize) then

69 set inPopulation.last = lambda

70 if (islands[island].length = 0) then set islands[island] = new vector of length 0

71 set islands[island].last = lambda

72 end if

73 end for n

74 champ = inPopulation.first

75 return champ

76 end fun populationPruning

The operator weights for the pareto front population pruning are shown
in Table 2.

Table 2. Operator Weights Table

Operator Weight Operator Weight Operator Weight
ξ 00 + 01 - 01
∗ 02 / 02 sqrt 03
square 02 cube 02 quart 02
log 04 exp 04 cos 05
sin 05 tan 06 tanh 06
max 07 min 07 abs 01

4 Constant Optimization Issues

A theoretical issue with basic GP symbolic regression is the poor optimization
of embedded constants under the mutation and crossover operators. Notice
that in basis functions (E4) and (E5) there are real constants embedded inside
the formulas. These embedded constants, 4.56 and .2, are quite important.
That is to say that basis function (E4) behaves quite differently than basis
function (E4.2) while basis function (E5) behaves quite differently than basis
function (E5.4).

• (E4) B3 = sqrt(x2)/tan(x5/4.56)
• (E4.2) B9 = sqrt(x2)/tan(x5)
• (E5) B4 = tanh(cos(x2*.2)*cube(x5+abs(x1)))
• (E5.4) B10 = tanh(cos(x2)*cube(x5+abs(x1)))



A Baseline Symbolic Regression Algorithm 15

The behavior can be quite startling. For instance, if we generate a set of
random independent variables for <x1, x2, x3, xm> and we set the dependent
variable, y = sqrt(x2)/tan(x5/4.56), then a regression on y = sqrt(x2)/tan(x5)
returns a very bad LSE. In fact the bad regression fit continues until one re-
gresses on y = sqrt(x2)/tan(x5/4.5). It is only until one regresses on y =
sqrt(x2)/tan(x5/4.55) that we get a reasonable LSE with an R-Square of .56.
Regressing on y = sqrt(x2)/tan(x5/4.555) achieves a better LSE with an R-
Square of .74. Of course regressing on y = sqrt(x2)/tan(x5/4.56) returns a
perfect LSE with an R-Square of 1.0. Clearly, in many cases of embedded
constants, there is a very small neighborhood, around the correct embedded
constant, within which an acceptable LSE can be achieved. In standard Koza-
style symbolic regression (Koza 1992), the mutation and crossover operators
are quite cumbersome in optimizing constants. As standard GP offers no con-
stant manipulation operators per se, the mutation and crossover operators
must work doubly hard to optimize constants. For instance, the only way to
optimize the embedded constant in s-expression (E5) would be to have a se-
ries of mutations or crossovers which resulted in an s-expression with multiple
iterative additions and subtractions as follows (Koza 1992).

• (E4) B3 = sqrt(x2)/tan(x5/4.56)
• (E4.2) B3 = sqrt(x2)/tan(x5/(1.0+3.2))
• (E4.3) B3 = sqrt(x2)/tan(x5/((1.0+3.2)+.3))
• (E4.4) B3 = sqrt(x2)/tan(x5/(((1.0+3.2)+.3)+.07))
• (E4.5) B3 = sqrt(x2)/tan(x5/((((1.0+3.2)+.3)+.07)-.01))

Characteristically, the repeated mutation and crossover operations which
finally realize an optimized embedded constant also greatly bloat the resulting
basis function with byzantine operator sequences (Poli 2009). On the other
hand swarm intelligence techniques are quite good at optimizing vectors of real
numbers. So the challenge is how to collect the embedded constants found in a
GP s-expression into a vector so they can be easily optimized by swarm intelli-
gence techniques. Recent advances in symbolic regression technology including
Abstract Expression Grammars (AEGs) (Korns 2010) and (Korns 2011) can
be used to control bloat, specify complex search constraints, and expose the
embedded constants in a basis function so they are available for manipulation
by various swarm intelligence techniques suitable for the manipulation of real
numeric values. This presents an opportunity to combine standard genetic
programming techniques together with swarm intelligence techniques into a
seamless, unified algorithm for pursuing symbolic regression. The focus of this
chapter will be an investigation of swarm intelligence techniques, used in con-
nection with AEGs, which can improve the speed and accuracy of symbolic
regression search, especially in cases where embedded numeric constants are
an issue hindering performance.

Adding Abstract Expression Grammars to standard GP Symbolic Regres-
sion (Korns 2010) evolves the GLM’s basis functions as AEG individuals. Our



16 Michael F. Korns

simple modified elitist GP Algorithm (2) is outlined below. The inputs are a
vector of N training points, X, a vector of N dependent variables, Y, and the
number of generations to train, G. Each point in X is a member of RM =
<x1,x2,,xm>. The fitness score is the root mean squared error divided by the
standard deviation of Y, NLSE.

Clearly even for three simple basis functions, with only 20 features and
very limited depth, the size of the search space is already very large; and, the
presence of real constants accounts for a significant portion of that size. For
instance, without real constants, S0 = 20, S3 = 1.054x1019, and with B=3
the final size of the search space is 1.05x1057.

It is our contention that since real constants account for such a significant
portion of the search space, symbolic regression would benefit from special
constant evolutionary operations. Since basic GP does not offer such oper-
ations, we investigate the enhancement of symbolic regression with swarm
intelligence algorithms specifically designed to evolve real constants.

5 Abstract Constants

In standard Koza-style tree-based Genetic Programming (Koza 1992) the
genome and the individual are the same Lisp s-expression which is usually
illustrated as a tree. Of course the tree-view of an s-expression is only a visual
aid, since a Lisp s-expression is normally a list which is a special Lisp data
structure. Without altering or restricting standard tree-based GP in any way,
we can view the individuals not as trees but instead as s-expressions.

• (E6) depth 0 binary tree s-exp: 3.45
• (E7) depth 1 binary tree s-exp: (+ x2 3.45)
• (E8) depth 2 binary tree s-exp: (/ (+ x2 3.45) (* x0 x2))
• (E9) depth 2 irregular tree s-exp: (/ (+ x2 3.45) 2.0)

Up until this point we have not altered or restricted standard GP in any
way; but, now we are about to make a slight alteration so that the standard GP
s-expression can be made swarm friendly. Let us use the following s-expression.

• (E10) (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1)))

In this individual (E10), the real constants are embedded within the s-
expression and are inconvenient for swarm algorithms. So we are going to add
an annotation to the individual (E10). We are going to add enumerated con-
stant nodes, and we are going to add a constant chromosome vector creating
a new individual (E11). The individual (E11) will now have three compo-
nents: an abstract s-expression (E11), the original s-expression (E11.1), and
a constant chromosome (E11.2) as follows.



A Baseline Symbolic Regression Algorithm 17

• (E11) (* (/ (- x0 c[0]) (+ x0 x2)) (/ (- x5 c[1]) (* x0 c[2])))
• (E11.1) s-exp: (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1)))
• (E11.2) c: <3.45 1.31 2.1>

Individual (E11) evaluates to the exact same value as (E10). Each real
number constant in (E10) has been replaced with an indexed vector reference
of the type c[i], where c is a vector of real numbers containing the same real
numbers originally found in (E10). While this process adds some annotation
overhead to (E10), it does expose all of the real number constants in a vector
which is swarm intelligence friendly.

At this point let us take a brief pause. Examine the original s-expression
(E10) also (E11.1) and compare it to the new annotated abstract version
(E11). Walk through the evaluation process for each version. Satisfy yourself
that the concrete s-expression (E11.1) and the abstract annotated (E11) both
evaluate to exactly the same interim and final values.

We have made no restrictive or destructive changes in the original indi-
vidual (10). Slightly altered to handle the new constant vector references and
the new chromosome annotations, any standard GP system will behave as it
did before. Prove it to yourself this way. Take the annotated individual (E11),
and replace each indirect reference with the proper value from the constant
vector. This converts the abstract annotated (E11) back into the concrete s-
expression (E11.1). Let your standard GP system operate on (E11.1) any way
it wishes to produce a new individual (E11’.1). Now convert (E11’.1) back
into an abstract annotated version with the same process we used to annotate
(E10).

Furthermore, if we have a compiled a machine register optimized version,
γ(x), of (E10), we do not even have to perform expensive recompilation in
order to change a value in the constant chromosome. We need only alter the
values in the constant chromosome and re-evaluate the already compiled and
optimized γ(x).

Armed with these newly annotated individuals, let’s take a fresh look at
how we might improve the standard process of genetic programming during
a symbolic regression run. Consider the following survivor population in a
standard GP island.

• (E12.1) (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1)))
• (E12.2) (cos (/ (- x4 2.3) (min x0 x2)))
• (E12.3) (* (/ (- x0 5.15) (+ x0 x2)) (/ (- x5 -2.21) (* x0 9.32)))
• (E12.4) (sin (/ (- x4 2.3) (min x0 x2)))
• (E12.5) (sin (/ (- x4 2.3) (avg x0 x2)))
• (E12.6) (* (/ (- x0 3.23) (+ x0 x2)) (/ (- x5 -6.31) (* x0 7.12)))
• (E12.7) (* (/ (- x0 2.13) (+ x0 x2)) (/ (- x5 3.01) (* x0 2.12)))



18 Michael F. Korns

First of all, the GP mutation and crossover operators do not have any
special knowledge of real numbers. They have a difficult time isolating and
optimizing numeric constants. But the situation gets worse.

As generation after generation of training has passed, the surviving in-
dividuals in the island population have become specialized in common and
predictable ways. Individuals (E12.2), (E12.4), and (E12.5) are all close mu-
tations of each other. Evolution has found a form that is pretty good and is
trying to search for a more optimal version. GP is fairly good at exploring the
search space around these individuals.

However, (E12.1), (E12.3), (E12.6), and (E12.7) are all identical forms
with the exception of the values of their embedded numeric constants. As
time passes, the survivor population will become increasingly dominated by
variants of (E12.1) and in time its progeny may crowd out all other survivors.
GP has a difficult time exploring the search space around (E12.1) largely
because the form is already optimized - it is the constant values which need
additional optimization.

In swarm friendly AEG enhanced symbolic regression system, the individ-
uals (E12.1), (E12.3), (E12.6), and (E12.7) are all viewed as constant homeo-
morphs and they are stored in the survivor pool as one individual with another
annotation: a swarm constant pool as follows.

• (E13.1) (* (/ (- x0 c[0]) (+ x0 x2)) (/ (- x5 c[1]) (* x0 c[2])))
• (E13.1.1) s-exp: (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1)))
• (E13.1.2) c: <3.45 1.31 2.1>
• (E13.1.3) Swarm Constant Pool
• (E13.1.3.1) pool[0]: <3.45 1.31 2.1>
• (E13.1.3.2) pool[1]: <5.15 -2.21 9.32>
• (E13.1.3.3) pool[2]: <3.23 -6.31 7.12>
• (E13.1.3.4) pool[3]: <2.13 3.01 2.12>
• (E13.2) (cos (/ (- x4 2.3) (min x0 x2)))
• (E13.3) (sin (/ (- x4 2.3) (min x0 x2)))
• (E13.4) (sin (/ (- x4 2.3) (avg x0 x2)))

The AEG enhanced SR system has combined the individuals (E12.1),
(E12.3), (E12.6), and (E12.7) into a single constant homeomorphic canoni-
cal version (E13.1) with all of the constants stored in a swarm constant pool
inside the individual. Now the GP island population does not become domi-
nated inappropriately. Plus, we are free to apply swarm intelligence algorithms
to the constants inside (E13.1) without otherwise hindering the GP algorithms
in any way.

6 Constant Optimization

Abstract Expression Grammar GP can be used with particle swarm [3] which
evolves the GLM’s basis functions as AEG individuals. In Algorithm (4)



A Baseline Symbolic Regression Algorithm 19

swarm evolution is seamlessly merged with standard GP and our AEG particle
swarm algorithm is outlined in Algorithm (3) below.

Our Particle Swarm (PSO) algorithm has also been modified to fit within
the larger framework of an evolving GP environment. Therefore, the evolu-
tionary loop is in the GP algorithm and has been removed from the PSO
algorithm. Instead the PSO algorithm is repeatedly called from the main GP
loop during evolution. Furthermore, we must execute the PSO algorithm on
all AEG individuals with a non-empty constant pool; therefore, care must
be taken such that any one AEG individual does not monopolize the search
process.

The PSO algorithm gets its inspiration from the clustering behavior of
birds or insects as they fly in formation. There is the concept of an individual
swarm member called a particle, the current position of each particle, the
best position ever visited by each particle, a velocity for each particle, and
the best position every visited by any particle (the global best). In our case,
each particle will be one of the constant vectors in our AEG individual’s
constant pool. A fitness value will be assigned to each constant by wrapping
the AEG individual around the constant vector and scoring.

Each AEG <aexp,sexp,c,pool> stores the population of PSO individuals
in its constant pool and the current most fit champion as its constant vector
c. However, implementing the PSO algorithm requires adding a few new items
to our AEG individual. Let aeg be an AEG individual in our system. The best
position ever visited by any particle will be designated as aeg.best (global
best). The best position ever visited by each particle, i, will be designated as
aeg.pool[i].best (local best). The velocity of each particle, i, will be desig-
nated as aeg.pool[i].v. The score of a constant vector, c, will be designated
as c.fitness. And, of course, each particle, i, is nothing more than one of the
constant vectors in the AEG individual’s constant pool aeg.pool[i].

The changes and enhancements for constant optimization are shown in
Algorithm (A3).

Algorithm A3: Particle Swarm Constant Optimization

1 Function: optimizeConstants(me)

2 Parameters: WL, WG, WV, maxPoolSize

Replaces: A1.optimizeConstants lines 24 thru 26

Summary: Particle Swarm constant optimization optimizes a

pool of vectors, in an AEG formatted individual,

by randomly selecting a pair of constant vectors

from the pool of constant vectors. A new vector

is produced when the pair of vectors, together

with the global best vector, are randomly nudged

closer together based upon their previous

approaching velocities. The new vector is scored.

After scoring, the population of vectors is truncated



20 Michael F. Korns

to those with the best scores.

3 Function convertToAEG(me)

4 Input: me // Koza-style s-expression individual

5 Output: out // AEG annotated individual

Summary: Converts an s-expression individual into an AEG individual.

AEG Conversion removes all of the constants from an input s-expression

and places them in a vector where swarm intelligence algorithms can

easily optimize them. The output is a constant vector and the original

s-expression modified to refer indirectly into the constant vector

instead of referencing the constants directly.

6 set out = <aexp,sexp,c,pool> // empty AEG individual

7 set out.aexp = me

8 set out.sexp = me

9 set out.c = <..empty vector of reals..>

10 set out.pool = <..empty vector of vectors..>

11 set N = out.aexp.length

12 for n from 0 until N do

13 if out.aexp[n] is a real number constant then

14 set r = out.aexp[n]

15 set k = out.c.length

16 set out.c[k] = r

17 set out.aexp[n] = "c[k]" // replace r with c indexed reference

18 end if

19 end for

20 set out.pool[0] = out.c

21 return out

22 end fun convertToAEG

23 Function convertToSExp(me)

24 Input: me // AEG formatted individual

25 Output: out // Koza-style s-expression individual

Summary: Converts an AEG formatted individual into an s-expression individual.

All AEG constant vector references, like "c[k]", are replaced with

the actual constant values in the constant vector.

AEG formatted individuals are structured as: <aexp,sexp,c,pool>

26 set out = copy(me.aexp)

27 set N = out.length

28 for n from 0 until N do

29 if out[n] is a constant "c[k]" style vector reference then

30 set r = me.c[k]

31 set out[n] = r

32 end if

33 end for

34 return out



A Baseline Symbolic Regression Algorithm 21

35 end fun convertToSExp

36 Function: insertLambda(population,lambda) // aeg = <aexp,sexp,c,pool>

Replaces: A1.insertLambda lines 27 thru 31

Summary: Accepts an input individual (lambda) and converts it into

AEG format. It then searches the population of AEG individuals

for a constant homeomorphic AEG (an AEG with matching form and

constant locations although the value of the constants may

be different). If a constant homeomorphic AEG is found, the

input lambda is merged with the existing AEG version already

in the population; otherwise, the input lambda is inserted in

at the end of the population.

37 // Convert everything to AEG format

38 if lambda is not in AEG format then set lambda = convertToAEG(lambda)

39 P = population.length

40 for p from 0 until P do // Search population

41 set w = population[p]

42 if (w.aexp = lambda.aexp) then

43 set w.pool = append(w.pool,lambda.pool)

44 sort w.pool inascending order by fitness score

45 truncate w.pool to the maxPoolSize most fit constant vectors

46 set w.c = w.pool.first

47 set w.sexp = convertToSExp(w)

48 return population

49 end if

50 end for p

51 set population.last = lambda

52 return population

53 end fun insertLambda

54 Function: mutateSExp(me) // me = <aexp,sexp,c,pool>

Replaces: A1.mutateSExp lines 7 thru 13

Summary: mutateSExp randomly alters an input s-expression by replacing

a randomly selected sub expression with a new randomly grown

sub expression.

55 me = copy(me.sexp)

56 set L = number of nodes in me // me is a list of Lisp Pairs

57 set s = generate random s-expression

58 set n = random integer between 0 and L

59 set me[n] = s // Replaces nth node with s

60 set me = convertToAEG(me)

61 return me

62 end fun mutateSExp

63 Function: crossoverSExp(dad,mom)



22 Michael F. Korns

Replaces: A1.crossoverSExp lines 14 thru 23

Summary: crossoverSExp randomly alters a mom input s-expression by

replacing a randomly selected sub expression in mom with a

randomly selected sub expression from dad.

64 dad = copy(dad.sexp)

65 mom = copy(mom.sexp)

66 set Ld = number of nodes in dad // dad is a list of Pairs

67 set Lm = number of nodes in mom // mom is a list of Pairs

68 set n = random integer between 0 and Ld

69 set m = random integer between 0 and Lm

70 set dad[n] = mom[m] // Replaces nth node with mth node

71 set dad = convertToAEG(dad)

72 return dad

73 end fun crossoverSExp

74 Main:

75 vars (Ic starts at 0)

76 set J = me.pool.length

77 if (J<=0) then return me end if

78 i = Ic

79 c = copy(me.pool[i])

80 v = copy(me.pool[i].v)

81 if (v = null) then

82 set v = random velocity vector

83 set me.pool[i].v = v

84 end if

85 lbest = me.pool[i].best

86 if (lbest = null) then

87 set lbest = c

88 set me.pool[i].best = lbest

89 end if

90 gbest = me.best

91 if (gbest = null) then

92 set gbest = c

93 set me.best = gbest

94 end if

95 // Compute the velocity weight parameters

96 maxg = maximum generations in the main GP search

97 g = current generation count in the main GP search

98 WL = .25 + ((maxg - g)/maxg) // local weight

99 WG = .75 + ((maxg - g)/maxg) // global weight

100 WV = .50 + ((maxg - g)/maxg) // velocity weight

101 I = c.length

102 set r1 = random number from 0 to 1.0

103 set r2 = random number from 0 to 1.0



A Baseline Symbolic Regression Algorithm 23

104 // Update the particle’s velocity and position

105 for i from 0 until I do

106 set lnudge = (WL*r1*(lbest[i]-c[i]))

107 set gnudge = (WG*r2*(gbest[i]-c[i]))

108 set v[i] = (WV*v[i])+lnudge+gnudge

109 set c[i] = c[i]+v[i]

110 end for i

111 // Score the new particle position

112 set me.c = c

113 do evaluate me and set my fitness score

114 // Update the best particle positions

115 if (c.fitness > lbest.fitness) then lbest = c end if

116 if (c.fitness > gbest.fitness) then gbest = c end if

117 me.best = gbest

118 set me.pool.last = c

119 set me.pool.last.best = lbest

120 set me.pool.last.v = v

121 // Enforce elitist constant pool

122 sort me.pool ascending by fitness score

123 truncate me.pool to the maxPoolSize most fit constant vectors

124 set me.c = me.pool.first

125 set me.sexp = convertToSExp(me)

126 // Enforce iterative search of constant pool

127 set Ic = Ic + 1

128 if (Ic>=maxPoolSize) then set Ic = 0 end if

129 return me

130 end fun optimizeConstants

The results with the enhancements for constant optimization and operator
weighted population pruning are shown in Table 3.



24 Michael F. Korns

Table 3. Results with Weighted Pareto Front Pruning

Test WFFs Train-NLSE Train-TCE Test-NLSE Test-TCE
P01 14K 0.00 0.00 0.00 0.00
P02 96K 0.00 0.00 0.00 0.00
P03 74M 0.00 0.00 0.00 0.00
P04 34K 0.00 0.00 0.00 0.00
P05 94K 0.00 0.00 0.00 0.00
P06 12K 0.00 0.00 0.00 0.00
P07 82M 0.00 0.00 0.00 0.00
P08 1M 0.00 0.00 0.00 0.00
P09 2G 0.00 0.00 0.00 0.00
P10 35G 0.00 0.00 0.00 0.00
P11 21G 0.00 0.00 0.00 0.00
P12 90G 0.98 0.44 1.08 0.52
P13 42G 0.00 0.00 0.00 0.00
P14 88G 0.06 0.04 1.06 0.45
P15 1M 0.00 0.00 0.00 0.00

(Note: the number of individuals evaluated before finding a solution is listed in the
Well Formed Formulas (WFFs) column)

7 Conclusion

In a previous paper (Korns 2011), significant accuracy issues were identified
for state of the art SR systems. In this paper we attempt to lay the ground
work for an eventual proof of SR accuracy.

A simplified brute force base line symbolic regression algorithm has been
constructed, inspired by the work in (Koza 1992). Simplified enhancements for
controlling bloat, premature convergence, and embedded constant optimiza-
tion have been added. The base line algorithm is largely non-parametric and
easy to implement. The enhanced base line system achieves accuracy roughly
competitive with current state of the art SR systems on a set of previously
published test problems.

No attempt has been made to make this base line algorithm commercially
competitive. It has not been adapted to multi-tasking or to cloud computing.
In fact every effort has been made to simplify the base line algorithm for easy
implementation and ease of understanding.

Demonstrations of SR accuracy in the form of a challenge, such as ”We’ll
pay a cash prize for any test problem our SR system cannot solve - up to
a certain complexity”, will be part of the marketing campaigns of the best
commercial SR packages. No public domain base line algorithm is needed for
simple commercial accuracy challenges.



A Baseline Symbolic Regression Algorithm 25

However, to ”prove” SR system accuracy for test problems up to a certain
complexity will require a well understood public domain SR algorithm. Proving
SR accuracy will provide much greater academic and industrial penetration
benefits than mere open commercial challenges.

This base line algorithm provides an opening opportunity for SR com-
munity joint development and enhancement. To be useful, it will have to be
duplicated and enhanced by multiple researchers in the SR community. And
finally, the final base line algorithm will have to take on a form convenient for
SR theoreticians to ”prove” accuracy up to a certain complexity.

The opportunity is unprecedented. If the symbolic regression community is
able to offer accuracy, even within the favorable minimalist assumptions of this
chapter, and if that accuracy is vetted or confirmed by an independent body
(distinct from the SR community), then symbolic regression will realize its true
potential. SR could be yet another machine learning technique (such as linear
regression, support vector machines, etc.) to offer a foundation from which
hard statistical assertions can be launched. Furthermore, we would finally
have realized the original dream of returning not just accurate coefficients
but accurate formulas as well.

The challenge is significant. It is unlikely that any single research team,
working alone, will be sufficient to meet the challenge. We will have to band
together as a community, developing standardized test problems, and stan-
dardized grammars. More importantly we will have to reach out to the the-
oreticians in our GP discipline and in the mathematical and statistical com-
munities to establish some body of conditions whereby independent commu-
nities will be willing to undertake the task of confirming SR accuracy. And, of
course, first we, in the SR community, will have to work together to achieve
such accuracy.

Our further research directions will include enhancements of simplified ver-
sions of the elastic net opening initialization concepts in (McConaghy 2011).
We will also explore simple statistical analyses and modified learning tech-
niques based upon an analysis of the complexity pareto front which is surfaced
in the island structure resulting from operator weight pruning. Every effort
will be made to keep the enhanced base line algorithm relatively nonparamet-
ric and easy to implement.

What is clear is that if we, in the symbolic regression community, wish to
continue making the claim that we return accurate formulas; and, if we wish
to win the respect of other academic disciplines, then we will have to solve
our accuracy issues.



26 Michael F. Korns

References

1. Gregory S Hornby (2006). Age-Layered Population Structure For reducing the
Problem of Premature Convergence, in GECCO 2006: Proceedings of the 8th
annual conference on Genetic and evolutionary computation. ACM Press, New
York.

2. Michael Korns (2010). Abstract Expression Grammar Symbolic Regression, in
Genetic Programming Theory and Practice VIII. Springer, New York. Kauf-
mann Publishers, San Francisco California.

3. Michael Korns (2011). Accuracy in Symbolic Regression, in Genetic Program-
ming Theory and Practice IX. Springer, New York. Kaufmann Publishers, San
Francisco California.

4. Mark Kotanchek, Guido Smits, and Ekaterina Vladislavleva (2008). Trustable
Symbolic Regression Models: Using Ensambles, Interval Arithmetic and Pareto
Fronts to Develop Robust and Trust-Aware Models, in Genetic Programming
Theory and Practice V. Springer, New York.

5. John R Koza (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. The MIT Press, Cambridge Massachusetts.

6. John R Koza (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs. The MIT Press, Cambridge Massachusetts.

7. John R Koza, Forrest H Bennett III, David Andre, Martin A Keane (1999).
Genetic Programming III: Darwinian Invention and Problem Solving. Morgan

8. McConaghy, Trent, (2011). FFX: Fastm Scalable, Deterministic Symbolic
Regression Technology, in Genetic Programming Theory and Practice IX.
Springer, New York.

9. J.A., Nelder, and R. W. Wedderburn (1972). Generalized linear Models, in
Journal of the Royal Statistical Society, Series A, General, 135:370-384.

10. Poli, Riccardo, McPhee, Nicholas, Vanneshi, Leonardo, (2009). Analysis of the
Effects of Elitism on Bloat in Linear and Tree-based Genetic Programming, in
Genetic Programming Theory and Practice VI. Springer, New York.

11. Guido Smits, and Mark Kotanchek (2005). Pareto-Front Exploitation in Sym-
bolic Regression, in Genetic Programming Theory and Practice II. Springer,
New York.

12. Michael Schmidt, Hod Lipson (2010). Age-Fitness Pareto Optimization, in Ge-
netic Programming Theory and Practice VI. Springer, New York.


